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Simple momentum-transfer theory for the composition dependence I Z o

of ion mobilities and diffusion coefficients in gas mixtures at He

arbitrary field strengths is corrected and extended, and compared

with a similar theory based on momentum and energy transfer, and ~ t

with results based on direct solution of the Boltzmann equation by
C

Kihara's method. Final equations are recommended for predicting

composition dependences, given only results on ion mobilities and

diffusion coefficients in the pure component gases.
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Simple momentum-transfer theory has recently been used to pre-

dict the composition dependence of ion mobilities1 and diffusion co-

efficients2 in gas mixtures at arbitrary field strengths. The pur-

pose of this comment is threefold: to extend the range of validity

of the results of Ref. 2 to higher fields by allowing the ion tem-

perature to be anisotropic and to differ from the gas temperature;

to correct an error in the expression used for the ion energy that

affects the final results of Refs. 1 and 2; and to point out the

relation of these results to a similar theory developed by Milloy

and Robson,3 and to recent work based on direct solution of the

Boltzmann equation.

By equating the momentum transferred to ions of charge e by an

electric field, E , to the momentum transferred by the ions to the

neutrals through collisions,l and by taking into account the pressure

forces that arise if the ions are not distributed uniformly in

space,2 one obtains the following momentum-balance equation for the

mean ion velocity () ,

>' 4*
En v) iP.N. (v .Q(v )> = ne - pi (1)

where C is a proportionality constant of order unity, n the

number density of ions, i. the reduced mass of an ion-neutral

pair, N. the number density of neutral species j , v . the

relative speed of a colliding ion-neutral pair, Q(v .) their

momentum-transfer or diffusion cross section, and pi the partial

pressure tensor for the ions. Pointed brackets indicate an average

over relative speeds. In a coordinate system in which E is directed
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along the z-axis, p.i is a diagonal tensor with components

Pxx = pyy = _L and z = pl . Assuming that the ions obey the

ideal gas equation of state, we introduce

pll = nkT , pl = nkT , (2)

where the temperatures parallel and perpendicular to the field are

defined by

kTII = m [(vz2>  (z 2  , kTL = m (vx2>) , (3)

where m is the ion mass. Then V = k .

We focus attention first on the mobility by considering spa-

tially uniform conditions, for which ( = vd E KE , where

vd is the drift velocity and K the mobility. From Eq. (1)

we can write K in terms of the mobilities K. in the pure com-

ponents,

x. (v .Q(v .))1 i( r r > (4)
K K. (v .Q(v .)>.

where the x. are mole fractions, and ( )> means an average in

pure gas j , as distinguished from an average in the mixture ( ).

The evaluation-of the ratios (vrjQj )/(vrjQj> j proceeds as in

Ref. 2, and involves three approximations. First, the average of

the product, (v rQ(v .)) , is decomposed into the product of the

averages, (vrj) Q((v< rj) ). Second, the average (vrj) is re-

placed by the rms average (v r2 1/2, which is then evaluated

from the partitioning of the ion energy among thermal energy, drift

energy, and random field energy. The third approximation enters

through the expression for the energy partitioning,

(vrj2)>  (v2  t (v 2 ) = 3kT/. + <(v 2  [1 + (M)av/m ()A ) Z
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where V. is the neutral species velocity, M. its mass, T
3 j

is the gas temperature, and (M >av is a mean mass of the gas

mixture, defined as

(M) EW.M./E. , (6)
>Mav j j j 

. x.M. (v ( ))/(m M) (7)
) j j r j

The energy partitioning can be calculated by Wannier's method,

as was done in Ref. 1, or equivalently by an energy-balance

equation, as was done in Ref. 3. Unfortunately, there is an error

in the expression for the energy partitioning in Ref. 1--in Eqs.

(27) and (29) the Qj should be replaced by (vrjQj ) to give

the correct weight factors w. as in Eq. (7). The numerical

example in Ref. 1 is therefore incorrect in detail because of the

incorrect w. used. However, at high fields the relative speed

is the same as the ion speed, and there is then no mistake in the

The theory of Milloy and Robson3 for the mobility is essentially

the same as the foregoing treatment up to this point, but makes

further approximations in order to express the deviations from Blanc's

law entirely in terms of the behavior of the ions in the pure neutral

components, without explicit reference to the mixture itself. Thus

the mixture averages are expanded in series

Krj <Vj2 d<vvdj ( j > )>j

2 d<vr .j2 3 + * (8)2 r 2
vd> vj j d > j(
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From Eq. (5) we find

(vrj 2 > - (v j2j Vd2 [1 + (M)v/m] - Vdj 2 (1 + Mj/m) . (9)

Since this expression appears as a correction term in Eq. (8), it

need be evaluated only in lowest order, corresponding to

rvj Kvrj Q j , which yields

1 -1
MC'\r .> <vj2> D - -]

vdj Vdj(m + Mj.

2- (m + Mj) Vdj . (10)) dj (10)

The derivative in Eq. ( 8) is obtained by differentiation of Eq. (1)

written for a single pure component having the same total number

density as the mixture (Nj = N), and is found to be

din <v Q(v) . _d n vd 1 i ~ dn v

d v > d 2  M+MM d In (E/N) d In (E/N)
S- 

--

d In K.2v
n K . (11)

2 m + M d in (E/N)
2 Vdj 3

Substituting these results back into Eq. (4), we obtain

x. x. d In K.
. - 1; 1 -1 1* ( 1 - A.) (12)

j j j d In (E/N)

A- 1 = (m + M) K 2 (m + .)K.) _ (13)i (m + K
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which is the result of Milloy and Robson. This expression is re-

markably similar to one obtained from a direct solution of the

Boltzmann equation by Kihara's method. The main difference.is that

the tAj in Eq. (12) is multiplied by a complicated factor G. that

happens to be numerically close to unity. Thus Eq. (12) can be recom-

mended as an excellent estimate for deviations of the mobility from

Blanc's law.

The preceding calculations can obviously also be applied to the

longitudinal (DIi) and transverse (DL) diffusion coefficients,

but an additional feature must enter. It is clear from Eq. (1)

that spatial inhomogeneity affects < ) . Since Eq. (5) shows

that (vrj) is related to the mean ion speed, spatial inhomo-

geneity must also affect (v r. . Thus we must allow both

(- ) and ( vrj) to have small contributions from spatial inhomo-

geneity, but we may consider these as perturbations and linearize

with respect to them. Denoting the spatially homogeneous case

with a superscript, we expand the average (v .Q(v .)

in a series similar to Eq. (8),

(v.rQ(vrj) = (vrQ(v )) +

+r 2 d (v .Q(v r) )o
2 - (v )i d v o + ... . (14)

From Eq. (5) we find, on setting (v z ) = d d

(rj2 -. 2 ( 2 vd [1 + (M )a/m]

- 2vd  1 av vd.kT nm neE 9z (5
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the last step following by substitution for (vz) - Vd from Eq.

(1). Since this last result is independent of j , we can multiply

Eq. (14) by vjNj and sum over j.; the derivative term is then

obtained by differentiation of Eq. (1), yielding a result similar

to Eq. (11),

d In El.N. (v .Q(v J) >1
r i1 m d In K 1

S2 m+ M d In(E/N)
d (v rj 2vd2 + av

Substituting these results back into Eq. (1) and linearizing with

respect to derivatives of n , we identify the transport coefficients

and observe the following relations among them:

eDI % kTi + d In K (17)
K d In(E/N) "

E n kT( . (18)

Equations (17) and (18) have been derived previously by pheno-

menological arguments,5'6 and have been shown to give good quali-

tative agreement with numerical solutions of the Boltzmann equa-

tion.6 A more exact treatment according to kinetic theory gives

eD
=D , l k T d In K + " (19)

K - k T,1 d In (E/N) ,

where y = 3/2 and L < 1/2 , which is valid to order (E/N) .

Within this order, the ratio DI /D_ is the same whether

y1I = 3/2 or 1 and 7Y = 1/2 or 0 are used. Thus Eqs. (17) -

(18) are consistent with Eq. (19), even though the individual

y values differ.

The ion temperatures are obtained from Eq. (3) by an energy-

partitioning calculation, either by Wannier's method applied to



-8-

mixtures,1 or from a first-order solution to the Boltzmann equa-

tion.7 In either case, the result for the mixture is

k5Tm + j VMd~a 2

kTI =kT + <Vd (21)

5m + 3 MA a v

where (M>av is given by Eq. (6) and

(MA av w M A. /Z . (22)

in which A is a ratio of cross sections of order unity.

To find the composition dependence of the diffusion coefficients

we substitute Eq. (19), which applies to both mixtures and pure

gases, back into Eq. (4),

TI : x ( (vr Q(v r) d InK

n d InK
x + y d ln(E/N) (23)

The important new feature is the appearance of the ion temperatures in

Eq. (23). The temperatures in the mixture and in the pure components

are not the same at the same value of F/N because the partitioning

of the ion energy among drift and random field components depends on

the nature of the ion-neutral collisions. One immediate consequence

of this is the recognition that the diffusion coefficients will deviate

from Blanc's law at high fields even for the Maxwell model of constant
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collision frequency, for which the ratios (vr j )/( vrjQj )

are all unity and all derivatives of mobility with respect to E/N

are zero. Numerical calculations of deviations from Blanc's law

for the Maxwell model have been performed and the results are shown

in Fig. 1.

The ratios (vr Qj 0/ vrj Q )o in Eq. (23) can obviously

be evaluated by the same methods used for the mobility. Substitut-

ing these results into Eq. (23) and linearizing with respect to the

derivatives of mobility, in order to be consistent with the trunca-

tions in Eqs. (8) and (14), we obtain an expression that still con-

tains a mixture quantity on the right-hand side, namely the deriva-

tive d InK/d In(E/N) from the last factor of Eq. (23). In order

to evaluate this quantity in terms of pure component properties, we

differentiate Eq. (12), which leaves us with second derivatives of

K. with respect to E/N. These second derivatives can be approxi-

mated by appeal to the following symmetry argument. Since the gas

is isotropic K must be an even function of E/N; expansion in series

must therefore involve only even powers of E/N,

K = K(O) [1 + a1 (E/N) 2 + a2 (E/N) + ... . (24)

Differentiating twice and comparing results, we find

d2 In K d In K 42 /N) + terms of order (E/N) . (25)
d (ln E/N)

2  d ln(E/N)

This expression holds for both mixtures and pure gases. Substitu-

tion of this expression then yields the final result for the com-

position dependence of the diffusion coefficients,
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D1I j (D'L) J (DII)J ) r TL

x. d In K.
+ e Z _ 3 (1 - A) (1 + (26)
2kTj j K d In (E/N) 2 (ll2

The ion temperatures in this expression are to be evaluated from

Eqs. (20) - (21), but with the average masses calculated with weight

factors w. approximated by making expansions as in Eq. (8),

x. x. d In K.
x. i+ 1 1d 1i (E/N)1- . (27)(+ M.) K. 2 7 7 d . n (EIN)

These results are nearly the same as those obtained by solution of

the Boltzmann equation. The differences are relatively minor: the

A. is missing the G. factors as in the mobility expression of

Eq. (22), the values of yll and yL are somewhat different, and

the Boltzmann expression does not include the small derivative term

in the expression for the m..

As an excellent estimate for deviations of the diffusion coef-

ficients from Blanc's law we recommend the following procedure: use

Eq. (26) with A. given by Eq. (13), with yll and YL given their

accurate kinetic-theory values, and with the w. given by just the

leading term of Eq. (27).

As a numerical example we consider K+ ions in an equimolar

mixture of He + Ar at 3000K, using as input data the measurements

on K+ in He3 and K+ in Ar.9  Deviations from Blanc's law for K

and for DII are shown as a function of field strength in Fig. 2,

as calculated from the Boltzmann equation and from Eqs. (12) and

(26). The shapes and magnitudes of these curves have been discussed

elsewhere 4; the important point here is the closeness of the



agreement for the two calculation methods.

In summary, the various theories for the composition dependence

of ion mobilities and diffusion coefficients in gas mixtures have been

shown to be consistent. Equations (12) and (26) (modified as

suggested above) are recommended for predicting deviations from

Blanc's law as a function of field strength.
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FIGURE CAPTIONS

FIG. 1. Ratio of D j(Blanc) to Dl1(mix) at high fields for

an equimolar Maxwell-model binary gas mixture, as contours in a

KI/K2 vs. M /M2 plane. We have taken m = M2 . Notice that

the deviations from Blanc's law are always negative. The corre-

sponding ratio for mixture mobility is always unity for the Maxwell

model.

FIG. 2. Percentage deviations from Blanc's law for mobility,

100 K-1 - K-1 K-1 and for D as a function of field
Blanc / Blanc

strength, as calculated for K+ ions in an equimolar He + Ar

mixture at 300 0K. The solid curves are the results from the Boltz-

mann equation according to Ref. 4, and the dashed curves are the

present momentum-transfer results of Eqs. (12) and (26).
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